

4

(1)

where n represents the highest pip count in a set of dominoes + 1 (i.e., for double-6

dominoes, n = 7). One is added to the highest pip count to account for the zero (or blank)

dominoes. By applying Equation 1, double-6 dominoes contain 28 dominoes while

double-3 dominoes contain 10 dominoes. Now that the set size is calculated, Equation 2

illustrates the number of possible starting states for two player dominos with set size L

and a boneyard size B.

(2)

Where SS is the number of starting states, L is the size of the set, B is the boneyard size

(B ≤ L-2) and D is the size of a player’s hand (both players have equal hand sizes).

Table 1 illustrates how the number of starting states grows exponentially as the pip size

grows.

Table 1: Table of Starting States for Dominoes.

Pip Size Dominoes in set Distribution Starting States
Double-2 6 2-2-2 20
Double-3 10 3-3-4 4,200
Double-4 15 5-5-5 576,576
Double-5 21 7-7-7 271,591,320
Double-6 28 9-9-10 6.38 × 1011

∑
=

+
==

n

i

nniS
1 2

)1(








 −
×








=

D
BL

B
L

SS

13

MiniMax Search

When working with a complex search tree to find the optimal move to make at

every level of the tree, a wise decision is to limit the counter move that the opponent is

capable of making for that turn. This is done by choosing the move that maximizes the

player’s chance of winning, while minimizing the opponent’s winning chances.

According to Funge and Millington [14], it can be easy to predict chances of

winning towards the end of the game based on the minimal count of plays remaining.

Conversely, counting remaining plays can be more difficult in the beginning and middle

of the game, because of the uncertainty of where the game ends. Therefore, an evaluation

function is employed to predict how the end game states appear [14]. This function can

also be called a heuristic function on a game tree search.

For this search to work, the player and the opponent or adversary are labeled the

terms “MAX” and “MIN,” respectively. Furthermore, as explained above, each level of

the game tree represents one of these participants.

Figure 3 illustrates how the evaluation function depicts values at every node in the

tree in terms of MAX and decides the most advantageous move to make. This algorithm

is assessing every move possibility in the game tree with an evaluation function to predict

the ending score in the leaf nodes. The algorithm then cycles this final score up through

the nodes to the two possible moves that MAX can take. The node with the highest score

MIN will allow is chosen [17].

14

Figure 3: MiniMax game tree.

As shown in Figure 3 MAX chooses the right node at a value of 2. This

assessment is completed at every turn throughout the game until a terminal (win, loss or

tie) state is achieved.

The Expectimax (EM) algorithm [26] is applied to MiniMax to account for

probability (chance nodes) within the game tree. Equation 3 illustrates the value

calculated at a chance node within a tree with probabilistic nodes [16]. This equation

states

𝐸𝑥𝑝𝑒𝑐𝑡𝑖𝑚𝑎𝑥(𝑠) = �𝑃(𝑐ℎ𝑖𝑙𝑑𝑖) ×

𝑛

𝑖

𝑈(𝑐ℎ𝑖𝑙𝑑𝑖) (3)

where P(childi) is the probability of a specific child node of s and U(childi) is the utility

value of childi and n is the number of chance options (for this research, dominoes in the

boneyard).

18

a state or both depending on the preference of the software designer. Figure 4 illustrates

the algorithm [6].

Figure 4: M* Algorithm [6].

Figure 5 shows an example game tree that illustrates the recursive calls by the M*

algorithm [6].

19

Figure 5: Game tree recursive search of M* with M*(a,3,f2(f1,f0)) [6].

The example in Figure 5 illustrates how the player “swindles” the opponent by

convincing the opponent that the player will select leaf node-o; however, the player

actually chooses node-n. This occurs as a result of the opponent’s model of the player

presuming the player is using the f0 evaluation function. Since this is the case, the

opponent’s model propagates a value of -6 to node-b and a 0 to node-c. Nonetheless, the

player is really using the f2 evaluation function that returns a value of 10 from node-n.

This value is strong enough to propagate back to the root (through backward induction)

and become the max value for the player. This value is also the highest value of all f2 leaf

node evaluations. One thing to note here is that a standard MiniMax evaluation of this

game using the f2 evaluation function yields 7. Therefore, this evaluation demonstrates

that M* potentially results in higher scores than MiniMax.

20

Carmel and Markovitch’s results from this study show that M* is more effective

than a Nash Equilibrium agent at winning at checkers extensive form games. Their tests

result in a higher number of wins and higher scores achieved in total against opponents in

the fully observable games of tic-tac-toe and checkers.

The M* algorithm is an interesting culmination of logic in that it not only

attempts to acquire the best value for the player, but it also works to exploit the weakness

of the opponent. M* shares many concepts of MiniMax; however, it differs from

MiniMax by employing an opponent model, that predicts moves based on the opponent’s

strategy. This type of logic can be used to expose higher scoring games and/or wins that

Nash Equilibrium does not allow; however, this opponent modeling research example

only accounts for fully observable games. The next two sections provide examples of

opponent modeling use for partially observable games.

Opponent Modeling in Poker.

When researching opponent modeling for partially observable games, Poker is

one of the most popular games researched. This section describes two agents that model

opponents in the area of opponent modeling in poker. The first is an agent called Loki [3,

11]. This agent applies weights to possible opponent states (or hands) based on the

opponent’s actions on previous rounds. The second agent called Poki [10], builds on

Loki by predicting potential actions the opponent will select. Both methods are shown to

be effective against opponents in open forums and closed environments.

Loki is an approach to opponent modeling in poker that is “capable of observing

its opponents, constructing opponent models and dynamically adapts its play to best

21

exploit patterns in the opponent’s play” [3]. This agent applies a probability distribution

to the opponent’s potential cards by assigning and updating weights to those possibilities

as the opponent bets, raises or calls. Statistics are then reevaluated every time the

opponent takes an action updating the opponent model.

Table 2 illustrates a subset of every possible opponent hand in a hand of Texas

Hold’em [3].

Table 2: Re-Weighting of Various Hands after the Flop [3].

Hand Weight HR HS ~PP EHS Rwt Nwt Comments
JH,
4H 0.01 0.993 0.99 0.04 0.99 1 0.01 very strong, not likely

AC, JC 1 0.956 0.931 0.09 0.94 1 1 strong, very likely

5H,
2H 0.6 0.004 0.001 0.35 0.91 1 0.2 weak, good potential

6S, 5S 0.7 0.026 0.006 0.21 0.76 0.9 0.54 moderate, low
potential

5S, 3S 0.4 0.816 0.736 0.04 0.74 0.85 0.6 mediocre, moderate
potential

were, the numbers in the first column represent the number on a playing card and the

capital letters represent the first letter in each suit (i.e, S is for Spades, H is for hearts).

The purpose of the table is to show how each hand is re-weighted after the flop. For each

possible hand the opponent modeler’s algorithm calculates the initial weight (Weight),

un-weighted hand rank (HR), hand strength (HS), and other factors leading to a new

overall weight (Nwt) [3]. To explain how this table works, Billings gives details on QS-

TS. He states that though this is a strong hand at first, when accompanied with a flop of

3H-4H-JH, the hand strength is then calculated low at 0.189 (where 1 is high and 0 is

22

low). This is because there are other potential hands available that can better maximize

on this flop. After further calculations the algorithm yields an effective hand strength

(EHS) of 0.22 for this hand. Consequently, per statistical observations of the opponent,

this is lower than the hand strength they usually bet on. The potential hand is then

assigned a new weight of 0.01. Furthermore, the new overall weight along with the

opponent’s next action is the key predictor of whether the opponent has that hand or not.

When played 100,000 games against controlled setup models, Loki was ahead by

approximately $5,000 while the other models were down $550. Loki also does well in

online poker play against humans; however, not enough information is present to show

that it can outperform previous best programs [3].

Poki is an AI poker agent that also plays on an online poker server with human

players. It is used to store game data for poker research [11]. This application is a

successor to Loki.

One improvement made in this application simplifies the opponent modeling

process by eliminating the re-weighting table and an artificial neural network (ANN). By

eliminating the re-weighting approach, this framework alleviates the burden of

accounting for a number of active opponents and betting positions. This reduces the

systems labor factor [11]. Furthermore, the Poki models specific opponents which allow

it to make more informed decisions.

An ANN is a machine learning algorithm that loosely represents a biological

neural structure, or brain [11]. Davidson also states that neural networks “typically

23

provide reasonable accuracy, especially in noisy domains. However they rarely can

produce better results than a more formal system built with specific domain knowledge.”

Figure 6 employs the inputs from Table 3 [10]. The ANN in Poki is trained by

applying back-propagation [10] (or supervised learning process for ANNs).

Figure 6: A neural network predicting on opponent’s future action [10].

The figure illustrates how the neural network makes use of the 17 inputs in

Table 3 and makes a decision on whether an opponent will Fold, Check/Call or Bet/Raise

[10].

24

Table 3: Neural Network Inputs [10].

Type Description
0 real Immediate pot odds
1 real bet ratio
2 bool Committed
3 bool one bet to call
4 bool two or more bets to call
5 bool betting round = turn
6 bool betting round = river
7 bool last bets called by player > 0
8 bool players's last action ws a bet or raise
9 real 0.1 X num Players

10 bool active players is 2
11 bool player is first to act
12 bool player is last to act
13 real estimated hand strength for opponent
14 real estimated potential strength for opponent
15 bool expert predictor says they would call
16 bool expert predictor says they would raise
17 bool Poki is in the hand

Poki was able to routinely predict opponent actions with an 80% accuracy, while

sometimes achieving accuracies of 90% [11]. While Poki makes a significant

improvement to state only predictions, it requires a significant amount of data to function

properly against a diverse set of opponents [20]. The next section describes how

opponent models can be generalized creating a more robust agent.

Generalizing Opponents to Simplify the Opponent Space.

This section describes how opponent modeling can be generalized to use in game

theoretic solutions of a partially observable extensive form game. The partially

observable extensive form game covered in this section is called Guess It [19, 20].

Because of hidden game state information in partially observable games, game theoretic

25

solutions such as MiniMax become difficult or non-useful to apply. To make this

information visible, predictions must be made using techniques such as opponent

modeling. “Opponent models are necessary in games where the game state is only

partially known to the player” [20]. At the same time, many opponent models are used to

train against specific opponents deeming it time consuming to train an agent against

multiple different opponents. Locket, et al solve this problem by generalizing opponent

types in Guess It allowing for an opponent model to play against many different

opponents without training against opponent-specific models [20].

Guess It is a game where each player is dealt an equal number of cards (usually

6), and one card is faced down on the table for players to guess. Participants cannot see

each other’s cards making this a partially observable game. The goal is for participants to

figure out the identity of the card faced down by taking turns obtaining and giving

information about each other’s hand. In each turn, players have three possible actions.

The first is to identify the faced down card. The second possible action is to “ask” the

opponent for a card that player does not have. Players can also “bluff” by asking for

cards that they already have. The participant who identifies the hidden card wins, while

any false identification of the hidden card is an automatic loss.

Game theoretic solutions such as MiniMax and other variants of MiniMax make it

simple to find the best move in many extensive form games; however, hidden

information in Guess It complicates play because the game state is not as obvious. Other

game theoretic solutions include partially observable Markov decision processes

(POMDP’s) though, for games with more than just a few states, POMDP solutions

26

become intractable [24]. This makes opponent modeling a great resource for solving

games with hidden information.

Opponent modeling inputs an opponent’s previous actions to a learning engine to

help predict the opponent’s state or next action. In many cases opponent models learn

through machine learning tools such as classification algorithms or neural networks.

These tools are used to predict opponent characteristics by using game state features as

inputs. Opponent characteristics are associated to classes identified by features entered

into the tool. Each model is opponent-specific, meaning that for each opponent, a new

model must be developed. This becomes a time management challenge for training for

several opponents.

Lockett solves the specific opponent problem by generalizing opponents in the

game of “Guess It” and employing mixture models. A mixture model in this research is a

probability distribution over a “cardinal set” of opponents [20]. In this research, the

cardinal set contains four different opponent-type categories. Each one of these types has

high potential to defeat another specific type as long as that type is identified. A mixture

model identifier employs neural networks to predict player-types through a supervised

learning process. From here, the agent can make a decision based on which opponent it

is playing. Experimentation was conducted using a mixture model based player and a

controlled setup player.

The four opponent-type categories of the cardinal set consist of Always-Ask,

Always-Bluff, Call-then-Ask and Call-then-Bluff. Always-Ask never calls or bluffs,

while Always-Bluff never asks or calls. The Call-then-Ask agent attempts to name the

27

center card if the other player asks for a card the Call-then-Ask agent lacks, otherwise it

asks, while Call-then-Bluff calls every potential bluff; otherwise it bluffs [20].

In the cardinal set, each player-type has an effective counter measure for another

specific player type. For example Table 4 illustrates all the hierarchy of all strategies.

Each strategy is able to defeat one of the other strategies.

Table 4: Guess It Strategy Hierarchy Matrix [20].

Strategy Defeats
Always-Bluff Call-Then-Bluff

Call-Then-Bluff Call-Then-Ask
Call-Then-Ask Always-Ask

Always-Ask Always-Bluff

As long as the agent correctly models which opponent-type it is playing, it can

determine which strategy to use against it. This serves as the basis of generalizing player

types.

Figure 7 illustrates the block diagram of mixture based architecture developed by

Locket, et al. [20]. The model includes two modules of integration. The mixture

identification module accepts the game state as an input and identifies a mixture. The

mixture in this diagram is a probability distribution over all possible opponents in the

cardinal set. The decision module accepts the mixture as well as a board state and makes

a decision on whether to bluff or call. The default move is to ask [20].

The controlled setup player in this experiment employs only the decision module.

While there is the absence of the mixture identification module, the controlled setup has

an identical training and validation regimen. The absence of a mixture identification

28

module in the controlled setup allows for testing the performance of the mixture

identification module of the mixture based player.

Figure 7: Mixture-Based Architecture for Opponent Modeling in Guess It [20].

By generalizing opponent-types in a mixture model, the agent was able to win an

average of 71.3% of 220,000 games played against 11 diverse opponents, while the

controlled setup won an average of 57.7% [20]. This diverse set of opponents included

the cardinal set opponents as well as unknown opponent types. When playing against all

unknown player types, the mixture model based player won an average of 61.5% games,

29

while the controlled setup player won an average of 54.6% of its games. In addition,

when played 20,000 games against the control player, the mixture model won an average

of 77.6% of the games. Lockett, et al. also state that all results are statistically significant

with to p < 0.05 [20]. This shows that generalizing an opponent has the ability to apply

opponent modeling on a broader scale without training against every different opponent.

Environment Value.

The discussion in this chapter involves many different methods of opponent

modeling. The question to ask is which type is the best to use for an agent in a specific

environment. This section bridges the gap into which model will be optimal to use

compared with other opponent model types.

Opponent modeling has the potential to improve a player’s expected score or

winning potential in a game depending on the environment in which the game takes place

[4]. This value of a game is improved by utilizing two classes of agent models. The first

model type is the opponent’s state in the game and the second model is of the opponent’s

actions. Given an accurate model of both of these features improves the value of the

game to the player’s favor. The environment value of an opponent model is the game

theoretic value improvement that a particular opponent model will provide an agent given

the environment. This environment value indicates an “upper bound to the potential

performance improvement of an agent” [4]. This section explains how these features (if

accurately modeled) help to improve the game theoretic value of a game.

Borghetti states that an agent model is a function or method that “predicts

something” about another agent [4]. As stated above, agent models can be employed to

30

predict information such as the state and/or the action of another agent or opponent. This

information is then used to select optimal moves. Optimal moves are selected using

game theoretic algorithms such as MiniMax or the probabilistic variant Expectimax (EM)

[26].

The state of a game involves all information about the game at a particular

instance in time. In computer science parlance, the state of a game can be compared to a

node on a tree. The class of state opponent models provides a probability distribution

over all possible states [4]. For example, for any number of possible states that an

opponent can belong to, the probabilities of all states must sum to one.

This logic is also true for the class of opponent models that predict the actions of

an opponent. Actions are classified as the strategy or move that the opponent (or any

participant in the game) will make at a given state in the game. As explained in the

previous paragraph, this model class provides a probability distribution over all actions.

The environment value (V_Lambda) is the maximum improvement of the game

theoretic value given a certain environment. This value is the difference between an

environment using a perfect model and environment using no model at all. Equation 4

[4] illustrates this explanation.

31

(4)

Where:

Γ – The original game with no opponent model

Γ′ – The transformed game with a perfect opponent model

𝑈(M) – The utility gained in a game

𝑀 – A particular model that provides a probability distribution over actions or states

Borghetti states that given an environment, an upper bound can be developed for

an environment to use as a baseline for any opponent model (in its class) to follow [4].

This upper bound baseline is developed by employing a perfect information agent model

or oracle to provide an optimal state or action set. The oracle is employed to display the

maximum potential that an opponent model can deliver. Assuming MiniMax (or similar

algorithm) is employed and all play is rational, if a model cannot do any better, the

resulting value is the Nash Equilibrium.

The precondition to finding the environment value is that the Nash Equilibrium of

a game can be found. For this research, this requires solving the game of dominoes,

which is not possible with today’s computers. “When this precondition does not hold, we

may be better off approximating the environment value using an estimation of the

distribution over likely opponents.” [4]. This research focuses on finding the expected

potential value gained from the information an action opponent model can provide

against specific opponents. Therefore the environment value is not calculated.

)|()'|()(Γ−Γ=Γ MUMUMV

32

Game theory has many applications that benefit from opponent modeling today.

The goal of applying opponent modeling is to provide information on the current state or

future actions of the opponent. Carmel and Markovitch’s [6] M* search provides a lot of

insight on opponent actions to show where to capitalize on opponent mistakes in a fully

observable environment. If there is a way to employ M* to a partially observable

environment, this opponent modeling algorithm could add value to dominoes. Billings

and Davidson, et al. [3, 11] have made vast improvements to how poker is played online

by applying models to predict opponent states and actions; however, this research

requires a lot of data processing to be optimal. Locket [20] solves this problem by

generalizing opponents into a cardinal set (or two-dimensional space of opponents

defined by the probability of calling or bluffing [20]), in which each decision is made by

applying the action of the generalized model. If opponents in dominoes can be

generalized, applying opponent modeling to dominoes should be a quicker and less data

intensive practice. Lastly, Borghetti shows how to choose the best opponent model for

specific environments. Any opponent modeler applied in current two player dominoes

research should apply Borghetti’s technique as a baseline.

Other Methods.

Donkers’s [13] probabilistic opponent model search or PrOM search involves

computing a probability distribution over several opponent types in order to make a

decision. PrOM search applies an approximation over several strategies, whereas this

research will apply the exact strategy of the opponent.

33

Cowling [9] creates an ensemble method for determination of Monte Carlo Tree

Search (MCTS). Cowling’s research involves applying MCTS and upper bounds on

Trees (UCT) to solve probabilistic games with hidden information. The research applies

these methods to the game of Magic: The Gathering in order to study many different

heuristics that can solve this complex game. While dominoes has probability and hidden

information, the focus of this research is not to develop heuristics to solve dominoes as

the simplified version of the game allows for a search to the leaf nodes of the game. The

main focus of opponent modeling for this research is to predict target’s strategy and

attempt to find an optimal move on a shallow game.

Dominoes AI Agents.

Although there are many online dominoes games available, academic research has

been completed in creating dominoes graphical user interfaces in C++, Java and BASIC.

Versions have been found that employ each language respectively. The C++ version is a

single game GUI entitled Domino 1.2.0 [23]. This version is created by using the Qt

Creator Library. The Java version Badomino [18] is also a single game domino

interface. Smiths [28] BASIC version is a game that employs strategy tables and learning

techniques to make optimal moves.

Domino 1.2.0 provides a user interface that plays a single hand of double-6

dominoes while keeping score. It also tells the user who wins the game at the end. While

the project is completed in a familiar language and library there are some limitations.

The first limitation is that most of the code and comments are in Russian. While the code

provides a useable GUI, the code is difficult to decipher. There is also no way to scale

34

the code from double-6 to a smaller (or larger) set of dominoes for experimentation

purposes. Lastly, there is no experimental control to run many games in sequence.

The main focus on the Badomino project is to build a well working domino

graphical user interface employing AI logic; however, more emphasis is placed on the

goodness of the GUI itself. The AI module employs myopic strategies; however, it does

apply AI to determine the best myopic strategy to employ. Furthermore, this is also a

single game system that is not scalable for smaller or larger sets of dominoes.

Smiths learning algorithm involves strategy learning. This technique applies a

model that plays hundreds of games against itself to learn many situations of the game in

order to make an optimal move against other opponents. Smith’s research applies

strategy tables to avoid applying techniques used for fully observable games. This

research applies opponent modeling and roll-out techniques to overcome many of the

barriers involved with partially observable games.

Conclusion

Game theory is a complex field in which research is conducted implementing

search trees and other graphical figures to play games at an optimal level. When

traversing a tree in adversarial games, MiniMax search implements an evaluation

function that estimates the value of the game at that point in order to optimize every

action. The drawback of this search is that its purpose is to work in a fully observable

environment. Opponent modeling is used in many in many applications in order to

produce a better estimate on imperfect information to make the best prediction. The next

35

section explains how opponent modeling will be used in two-player dominoes to make

the best prediction in a stochastic partially observable environment.

36

III. Methodology

Introduction

This chapter describes the methodology of how a dominoes artificial intelligence

agent employs opponent modeling to achieve improved knowledge of the opponent

strategy in order to optimize the decision making process. The chapter starts with the

definition of the problem. Next, the experimental setup is explained. Lastly, this chapter

explains how each agent of the experimental setup is tested.

Problem Definition

Goals and Hypothesis.

The goal of this research project is to show how well modeling an opponent’s

strategy can improve a player’s decision in two player dominoes. When an opponent’s

strategy is unknown (assuming all players are rational), the optimal strategy is to achieve

a Nash equilibrium through an adversarial search. MiniMax (a type of adversarial

search) can be applied to this research by creating a game tree representation for the

game of dominoes. Figure 8 illustrates a simple game of dominoes where the player and

opponent both pull three random dominoes from a full set of double-6 dominoes. Each

board picture represents a node on a game tree. The position on the game tree is called

the game (or board) state. This tree represents all possibilities of playing this game

instance between the two players.

37

Figure 8: Game tree representation of dominoes.

38

If the opponent plays with a non-rational strategy, another equilibrium can be

achieved that capitalizes on non-rational actions made by the opponent. This is achieved

by applying M* search [6], which replaces MIN’s strategy with an opponent model. In

order to use M* search, an opponent model (or strategy) must be identified. This concept

generates the research question “how does M* search perform in the game of dominoes?”

In addition to finding and evaluating the opponent model, another challenge arises

in applying M* search to a partially observable game. The issue with applying a search

algorithm to a partially observable game is that the level of certainty in the location on a

game tree is much worse than in a fully observable environment. Without accurate board

state data, potential exists for the search method to traverse a game tree with an erroneous

game instance, reducing the possibility of finding an optimal play.

Approach.

To solve these problems, this project centers around a hierarchal approach that

focuses on employing an opponent classifier to predict opponent types [27]. Then a

decision engine for the player agent uses the estimated opponent’s strategy in M* search.

To handle the effects of hidden information, Monte Carlo sampling simulates iterations

through multiple possible game states according to the actual probability distributions of

unknown dominos in the boneyard and the opponent’s hand.

The hierarchal approach to this decision system involves first predicting an

opponent type, then applying the opponent’s strategy to M* search. Opponent types from

here on will be defined as “targets.” There are three targets identified for this research.

44

Table 6: Quadrant chart of experimental results.

Target Information

Target Oracle OM

State

Info

State
Oracle

1. 2.
Expected Value

Gain Actual Value

Upper Bound

MCR

3. 4.
Expected Value

Gain Actual Value

 Real World

The perfect information environment yields the upper bound of M*’s potential for

environment and actual values. The target oracle predicts a target’s strategy with 100%

accuracy. This allows the M* engine to apply the correct target type at every play of

every game, therefore each game reflects an optimal decision at every play with respect

to M*’s capabilities. Likewise, when applying perfect state information to the

Expectimax engine, Expectimax plays optimal with respect to its capabilities. Thus, the

maximum gain is calculated by taking the difference in value between both engines with

respect to score differentials or total games won/tied.

Dominoes Experimental Setup

This section describes the experimental setup that answers the question of

whether an opponent model can improve a player’s decision in the game of two player

dominoes – and by how much is the improvement. The setup consists of an adversarial

search decision engine as well as three target agents. The adversarial search decision

engine consists of the M* and Expectimax search algorithms. The player agent employs

62

 The number of tests to be run correspond to the number of levels and factors of

experimentation. Table 12 illustrates the levels and factors for comparing both decision

engines.

Table 12: List of levels and factors for experimentation.

Information
Source (I)

Observability
(O) Target (T) Starting

State (S)
Decision

Engine (E)
Repeat

(R)

Oracle - Truth Full Random

1-4200
M* Search

1-12 Myopic Scoring
Opponent
Modeler Partial Expectimax

Search Myopic Defense

The four quadrants of data are represented in the two left most columns.

Equation 2 is applied to calculate the number of possible starting states below.

 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒𝑠 = � 𝑆𝑒𝑡 𝑠𝑖𝑧𝑒
𝑏𝑜𝑛𝑒𝑦𝑎𝑟𝑑 𝑠𝑖𝑧𝑒� × �𝑆𝑒𝑡 𝑠𝑖𝑧𝑒 − 𝑏𝑜𝑛𝑒𝑦𝑎𝑟𝑑 𝑠𝑖𝑧𝑒

𝑑𝑜𝑚𝑖𝑛𝑜𝑒𝑠 𝑝𝑒𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 � (12)

 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑒𝑠 = �10
4 � × �63� = 4,200 (13)

There are three target types that are played against in all 4,200 starting states by both

decision engines. Furthermore, each test is repeated 12 times to account for variations in

boneyard pulls.

Equation 14 applies Table 12 and shows of the number of tests needed to

complete the dataset.

 𝐼 × 𝑂 × 𝑇 × 𝑆 × 𝐸 × 𝑅 = # 𝑜𝑓 𝐺𝑎𝑚𝑒𝑠 (14)

where all variables are identified in Table 12. This calculates to

63

 2 × 2 × 3 × 4200 × 2 × 12 = 1,209,600 𝐺𝑎𝑚𝑒𝑠. (15)

All experimentation follows the guidelines outlined in this chapter. The next

chapter provides an in depth discussion on the results of this experimentation. Chapter 4

also describes which classifier is applied to the opponent model, then demonstrates how

the M* decision engine performs against a target with respect to a Nash Equilibrium

player agent. Results from all four quadrants are analyzed for statistical significance to

show whether the agent gains or loses value over the Nash equilibrium player depending

on the information source and the environment.

69

validation process while it takes random forests over 35 s. This shows that even though

random forests produce a higher classification accuracy with less data, it takes 70 times

longer to obtain this result. Furthermore, the random forests classifier only gains a 10%

advantage over MDA and MDA’s classification accuracy for three classes is still greater

than the prior probability of 1
3
 . 70 times longer training, testing and validating time is

not worth the 10% gain in percentage; therefore, based on these findings and the amount

of simulations from the levels and factors of testing, MDA is chosen to complete the

opponent model data collection.

Opponent Model Value Assessment

The opponent model value is assessed in two different conditions. The first

condition is with perfect information, (as described in quadrants 1 and 2 of Table 6).

Perfect information provides data on the upper bound value that the opponent modeler

provides. These two quadrants show the possibility of gaining value against the Nash

Equilibrium player while competing against three static targets. Next the value of the

model is evaluated in an imperfect information environment (for quadrants 3 and 4).

This environment demonstrates the actual upper bound value of the game. Each quadrant

represents 50,400 games played with EM and M* against each target.

 All values in each table are tested for statistical significance in accordance with

calculations described in Chapter 3. The two tailed binary test shows significance for the

win/tie total data. Its null hypothesis states that there is no difference in win/tie

percentage between M* and EM. The alternative hypothesis states that there is a lower or

higher difference in win/tie percentage. The one-tailed difference of means test is applied

70

to the score differential data. The null hypothesis of this test states that the difference of

means between M* and EM is less than or equal to zero, while the alternative states that

the difference of means is greater than zero. All significant values are computed with a

95% confidence interval. Cells with statistically insignificant values are shaded gray.

Perfect Information.

The data in Table 19 and Table 20 illustrate the upper bound expected value gains

of the opponent model. The first three columns represent the expected value gains of the

opponent modeler against all three targets. The bottom row shows the classification

accuracy of the model M* employs. Since M* receives target predictions from the oracle

in quadrant one, the prediction accuracy is 1.00 for all three targets.

Table 19: Mean per-game score differentials between the oracle and Expectimax for
each target for 50,400 games in a fully observable environment with a target oracle.

Targets Random Myopic
Scoring

Myopic
Defense

Decision
Engine

M*
(Oracle) Expectimax M*

 (Oracle) Expectimax M*
(Oracle) Expectimax

Fully
Observable 1.869 1.982 1.388 1.269 1.633 1.474
EVGscore ∆ -0.113 0.120 0.159
Prediction
Accuracy 1.00 1.00 1.00

Table 19 illustrates the upper bound expected value gain score value for all

50,400 games. Since there is perfect state information and the search reaches the leaf

nodes of the tree, Expectimax performs at its best. Furthermore, M* operates at its best

with a known state and target strategy. This table represents the environment in which

there exists perfect information in state and target strategy; therefore both engines are

71

functioning at their highest aptitude. With both engines playing at their best, this

quadrant displays (given a specific target) if it is possible for M* to outplay the EM

engine.

All players except for the random target contribute a gain for the M* engine.

Characteristics of the random player involve making unpredictable moves. Furthermore,

the M* algorithm’s performance depends on making move predictions. These

predictions prune parts of the tree in which it assumes that the target will not play.

Incorrect information causes M* to make the wrong decision and traverse the wrong

nodes. The EM engine makes decisions based on playing a Nash Equilibrium opponent,

which means that it examines all plays the opponent can take and expects its opponent to

make an optimal move. In short EM is expected to make a better decision than M*

assuming M* obtains an incorrect target prediction. Table 20 displays the highest

potential gain of win/tie totals between the EM and M* decision engines. The scoring

target is positive, which shows that Expectimax loses 466 more games than the M* agent

in this quadrant. Expectimax also loses 352 more games playing against the defense

target. This means that M* has the potential gain of these values in the other three

quadrants. The random target value is insignificant.

72

Table 20: Total win and tie mean differences between oracle and Expectimax for each
target in a fully observable environment with a target oracle.

Targets Random Myopic
Scoring

Myopic
Defense

Decision
Engine

M*
 (Oracle) Expectimax M*

(Oracle) Expectimax M*
(Oracle) Expectimax

Fully
Observable 34,107 34,031 32,209 31,743 33,257 32,905

EVGwins/ties 76 466 352
Prediction
Accuracy 1.00 1.00 1.00

Table 21 and Table 22 illustrate the actual value for double-3 dominoes with

perfect state information with the opponent model containing an MDA classifier trained

and validated with 8k samples. The one-versus-rest (offline) prediction accuracy for the

MDA is 45%. Table 21 shows the actual value in score differentials and Table 22

illustrates the actual value in wins over the Expectimax. Furthermore, these tables show

the actual on-line prediction accuracy against all three targets.

Table 21: Mean per-game score differentials between oracle and Expectimax for each
target in a fully observable environment with an opponent model.

Targets Random Myopic
Scoring Myopic Defense

Decision
Engine

M*
 (OM) Expectimax M*

(OM) Expectimax M*
(OM) Expectimax

Fully
Observable 1.984 1.982 1.143 1.269 1.517 1.474
EVGscore ∆ 0.002 -0.126 0.043
Prediction
Accuracy 0.316 0.465 0.336

All expected value gains in Table 21 are statistically insignificant. The actual

prediction accuracy for the defensive target is 0.336 which is slightly higher than the

prior percentage (of a random guess) but much lower than 1.00. The prediction accuracy

for the myopic scoring agent is much higher than the prior probability of 1/3; however it

73

still does not help M* enough to produce a gain against EM. Furthermore, the random

target prediction accuracy is lower than the prior probability. This shows that the

classifier selects (or classifies) the myopic scoring target over the other two targets.

Table 22, illustrates the actual values with total wins and ties.

Table 22: Total win and tie mean differences between oracle and Expectimax for each
target in a fully observable environment with an opponent model.

Targets Random Myopic
Scoring

Myopic
Defense

Decision
Engine

M*
(OM) Expectimax M*

(OM) Expectimax M*
(OM) Expectimax

Fully
Observable 34,212 34,031 31,345 31,743 32,988 32,905

EVGwins/ties 181 -398 83
Prediction
Accuracy 0.316 0.465 0.336

Table 22 illustrates the gain in win/tie totals for M* with perfect state and

imperfect target identity (action) information. The imperfect action information affects

the myopic scoring win/tie differentials with a loss of 864 more games than quadrant 1.

The Myopic defense and random targets produce insignificant gains with the information

provided.

Holding the state information constant allows the study of how much affect

prediction accuracy has on performance. The M* decision engine makes optimal

decisions based on the target information it receives. These data show that with

prediction dropping from 1.00 to less than 0.50 the M* decision engine performs with

lower gains than with perfect target identity information. Therefore, this depicts that this

drop in action information contributes to the loss in score differential and win/loss gains.

74

Imperfect Information.

Games played with imperfect state information are shown in Table 23 through

Table 26. These games are played with an environment identical to regular play

(assuming the target type is known). Quadrant three shows games in which state

information is imperfect while the target type is known. Quadrant four illustrates the

results for imperfect target information and state.

Table 23: Mean per-game score differentials between M*(oracle) and Expectimax for
each target under imperfect information in a partially observable environment with a

target oracle.

Targets Random Myopic
Scoring

Myopic
Defense

Decision
Engine

M*
 (Oracle) Expectimax M*

(Oracle) Expectimax M*
(Oracle) Expectimax

Fully
Observable 1.556 1.526 0.763 0.726 1.027 0.914
EVGscore ∆ 0.030 0.037 0.113
Prediction
Accuracy 1.00 1.00 1.00

Table 23 illustrates games with imperfect state but the target type is known.

Holding the target oracle constant allows for the comparison of how partial observability

affects the score difference EVG. Since the oracle perfectly predicts the target for M* in

this quadrant, M* is able to gain an advantage over the Nash Equilibrium agent. The

myopic defense provides the largest gain for this table with 0.113. This value is down

0.46 from the potential gain of 0.159 shown in results from Table 23. This shows that the

imperfect state has an effect on the amount of gain M* provides over the Nash

Equilibrium player. The other two target values provide insignificant gains. Table 24

75

illustrates the expected value gain for the number of wins/ties with imperfect state

information and a target oracle.

Table 24: Win and tie totals between M*(oracle) and Expectimax for each target in a

partially observable environment with a target oracle.

Targets Random Myopic
Scoring

Myopic
Defense

Decision
Engine

M*
 (Oracle) Expectimax M*

(Oracle) Expectimax M*
(Oracle) Expectimax

Fully
Observable 32,962 32,887 29,759 29,708 30,988 30,688
EVGwins/ties 75 51 310
Prediction
Accuracy 1.00 1.00 1.00

 These data show that there is potential to win and/or tie 310 more games than the

Nash Equilibrium agent in a partially observable environment for the myopic defense

target. The other target values are insignificant in this quadrant.

Actual Value Evaluation

Table 25 and Table 26 illustrates the opponent model’s actual value table for the

data taken in all 50,400 starting states using both imperfect state information and an

imperfect opponent classifier used with M*. These data show the real world

environment in which dominoes games take place. Furthermore, these tables illustrate

how the M* algorithm fares against a Nash equilibrium player in the environment when

playing against three different target types.

76

Table 25: Mean per-game score differentials between M*(OM) and Expectimax for each
target in a partially observable environment with an opponent model.

𝑻𝒂𝒓𝒈𝒆𝒕𝒔 Random Myopic
Scoring

Myopic
Defense

Decision
Engine

M*
 (OM) Expectimax M*

(OM) Expectimax M*
(OM) Expectimax

Fully
Observable 1.507 1.526 0.761 0.726 .988 0.914
AVGscore ∆ -0.019 0.035 0.074
Predict Acc. 0.272 0.627 0.170

Table 25 shows that the best performance gain for the M* decision engine when

compared with a Nash equilibrium player, occurs against the myopic defense target (with

a 0.074 actual value). This shows that in a real world environment the M* decision

engine has an actual gain of .074 points than the Nash equilibrium. The other two targets

show insignificant gains. Table 26 illustrates how many games M* wins or ties over

Expectimax.

Table 26: Win and tie total difference between M*(OM) and Expectimax for each target
in a partially observable environment with an opponent model.

𝑻𝒂𝒓𝒈𝒆𝒕𝒔 Random Myopic
Scoring

Myopic
Defense

Decision
Engine

M*
 (OM) Expectimax M*

(OM) Expectimax M*
(OM) Expectimax

Fully
Observable 32,205 32,887 29,717 29,708 30,846 30,688

EVGwins/ties -682 9 158
Predict Acc. 0.272 0.627 0.170

These data show that there is no significant gain in games over the Nash

Equilibrium agent when playing against the three targets. The prediction accuracy of this

data set is the lowest with the myopic defense target. This shows that (while holding

77

imperfect information as a constant from quadrant 3 to 4), lowering the prediction

accuracy to under 1.00 affects the performance of the M* engine.

The highest prediction accuracy is attributed to the myopic scoring agent. This

value of 0.627 shows that the MDA classifier predicts the scoring target more often than

the other two targets; however this is not enough to gain value over the Nash equilibrium

agent.

Against the random agent, M* produces a significant loss of 682 games in

comparison with the Nash Equilibrium agent. The random agent has an unpredictable

strategy. Furthermore, M* relies on a known target type and strategy to perform well.

The lack of a deterministic strategy to make decisions causes M* to play sub-optimal

games. Expectimax is able to make optimal moves without a strategy based on its

expectation of the target to play optimally. This explains why the Nash Equilibrium

agent is expected to win more games against the random target.

Summary of Results

The total expect value gain in the first quadrant is 0.159. This value drops in the

second quadrant due to the lack of perfect target knowledge. The same observation

occurs with the myopic scoring expected value gain. Even with an opponent modeler

with a 46% prediction accuracy, this gain is insignificant.

The partial observable quadrants show that there is potential to score a gain of

0.113 over the Nash Equilibrium player with the myopic defense target. The other two

values are insignificant in the third quadrant. The end results show that in the last

quadrant, there is still a statistically significant value gained over the Nash equilibrium

78

agent of 0.74 by the M* agent with the opponent modeler while playing against the

defense agent.

The Defense target demonstrates a 352 game advantage over the Nash

equilibrium player in the perfect information environment playing with a target oracle;

however, this gain is lost when applying the opponent modeler at a 33.6% prediction

accuracy. Similar to these results, the third quadrant of data illustrates a potential gain of

310 games over the NE player. The prediction accuracy is much lower in the fourth

quadrant at 17%. This lower prediction shows to affect the M*’s ability to make good

decisions and win more games.

In summary, the data show that the M* decision engine with an opponent modeler

is able to score higher than the Nash Equilibrium agent. It also has the potential to win

more games. The opponent modeler’s accuracy has an effect on how many games the

M* player wins as well as how many points it scores. Chapter 5 provides conclusions of

this thesis research and future work that can add advancement to this research topic.

79

V. Conclusions and Future Work

Based on the results of characterizing relative performance improvement over the

Nash Equilibrium solution for three types of dominoes-playing opponents, applying M*

search with an opponent model shows promise as long as the model has a high quality

prediction of board state information (to include what is in the other player’s hand and

what dominos are in the boneyard). This chapter summarizes the findings in the data and

explains where research can further explore this topic.

This research shows results for the M* decision engine with a 100% prediction

accuracy and prediction accuracy less than 100%. Quadrants 1 and 3 contain potential

values to be achieved by the opponent modeler. The lower percentages produce lower

actual results in quadrants 2 and 4. This means that potential exists for M* win or tie

more games than a Nash equilibrium player against specific targets.

The myopic scoring and random targets provide negative or insignificant gains for

the opponent modeler. There is potential (from quadrant 1) for the M* search engine to

have significant gain over Expectimax; however, data show that prediction accuracy of

the opponent modeler is not good enough to predict the correct target and make an

optimal decision. The random target’s contribution to expected and actual gains are

insignificant to negative, showing that M* has no potential to gain an advantage over the

Nash Equilibrium player if the target plays a random strategy.

In conclusion, applying an opponent modeler has potential to add value to an

agent in double three dominoes for specific opponent types. If the opponent plays a

80

random strategy, there is no potential. The accuracy of the opponent modeler has a big

effect on the way the algorithm makes decisions, even if the opponent classification

accuracy is over 50% (as shown by the scoring target in the fourth quadrant). The next

section explains future work that can help to further this research path.

Future Work

Future work for this research topic involve areas where improvements can be

made with the M* search parameters such as the opponent model and the state provided.

These parameters can be tuned in order to close the gap between the oracle results and the

opponent classifier results. The first area for improvement involves adding an opponent

modeler for the state of the game. The next chapter discusses playing against non-

myopic targets. Then it presents a brief discussion on adding a probability distribution

over all M* targets decisions and choosing the decision with the highest value. Lastly

discussed is applying an online learning module to the classifier in order to learn as the

agent plays.

Opponent Modeler for Board State.

The data show that the value of the opponent modeler is higher in a fully

observable environment. Revealing information about the state of the game to the

decision agent allows it to make better choices. Therefore adding an opponent modeler

for state information will provide better results for the opponent modeler if applied to the

M* search.

81

Non-Myopic Targets.

Another area to explore is non-myopic targets. These targets are in line with

Carmel and Markovitch’s research [6]. Their research explores fully observable games

where players assume the opponent’s termination condition as well as the evaluation

function of the opponent. Applying this concept to a partially observable game means

that both players will have to model each other and have some intelligence of the board

state.

Applying a Probability Distribution Model to the OM.

The opponent modeling paradigm applied in this thesis performs a three-way

classification and picks the most likely opponent from the set of three. In this thesis, M*

assumes there is only one possible opponent type with certainty. By altering the output

of the opponent-modeling classifier to yield a probability distribution over all possible

targets, M* can form a strategy by selecting from a probabilistically-weighted best

response to several target strategies instead of just one, whenever their predicted action

would differ.

Summary

In conclusion, this research can be applied to applications that involve two or

more players that have a desire to gain value in specific environments. For fully

observable games, modeling opponent’s actions and applying them to an M* style search

method provides a player the ability to make better choices as long as the target’s strategy

is predictable.

82

Appendix A. Rules of Dominoes

According to Armanino [2], players randomly choose an equal set of two sided

tiles of a 28 tile set. Each side of the tiles contains values ranging from blank (or zero) to

6, making each tile in the set unique. Figure 18 shows a full set of 28 dominoes.

Figure 18: Full set of double-six dominoes (28 pieces).

The object of the game is to match the sides of the dominoes with the dominoes on

the board and be the first to achieve a predefined ending score. Scoring is achieved by

adding the horizontal and vertical ends of the dominoes on the table. If the total is

divisible by 5, that is a scoring play. Figure 19 illustrates how moves are made between

83

the player and opponent in a simple game with three dominoes per participant

Figure 19: Example 5 turn game

As shown, the player scores twice in this game. The first score of 15 is made by

placing the (6|3) domino. This domino produces a value of 3 on the outside right end,

which adds to the value of 12 of the (6|6) domino on the left outside end. The second

score of 5 is made by the player placing (2|4) with a value of 2 on the left outside end

adding to (6|3) with a value of 3 on the right side end. Consequently, the opponent then

takes advantage of this opportunity to score 10 points by placing the (6|5) on the top edge

with the value of 5 exposed adding with the 2 and 3. By placing the (4|1) instead of the

(4|2), the player could have prevented the opponent from scoring. In short, this instance

demonstrates how easy scoring can occur as well as how a player can defend by playing

the right dominoes at the right time.

Additional rules state that the player whom achieves a “domino” [12], (plays all

dominoes in that player’s hand first,) obtains an additional score: the remaining pip

(domino dot) total in his/her opponent’s hands. Defensive play adds to the chance of

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
27 MAR 2014

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Aug 2012 – Mar 2014

4. TITLE AND SUBTITLE

Outperforming Game Theoretic Play with Opponent Modeling in
Two Player Dominoes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Myers, Michael M., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, Building 640
WPAFB OH 45433

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-14-M-57

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Intentionally Left Blank

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution statement A. Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES

This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States.
14. ABSTRACT

Dominoes is a partially observable extensive form game with probability. The rules are simple; however, complexity
and uncertainty of this game make it difficult to apply standard game theoretic methods to solve. This thesis applies strategy
prediction opponent modeling to work with game theoretic search algorithms in the game of two player dominoes. This
research also applies methods to compute the upper bound potential that predicting a strategy can provide towards specific
strategy types. Furthermore, the actual values are computed according to the accuracy of a trained classifier. Empirical results
show that there is a potential value gain over a Nash equilibrium player in score for fully and partially observable
environments for specific strategy types. The actual value gained is positive for a fully observable environment for score and
total wins and ties. Actual value gained over the Nash equilibrium player from the opponent model only exist for score, while
the opponent modeler demonstrates a higher potential to win and/or tie in comparison to a pure game theoretic agent.

15. SUBJECT TERMS

Dominoes, Opponent Modeling, M* search, Expectimax, Myopic Strategy

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
OF PAGES

101

19a. NAME OF RESPONSIBLE PERSON

Dr. Brett J. Borghetti, AFIT/ENG
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, x 4612 brett.borghetti@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

